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Abstract
An effective Hamiltonian describing interaction between generic fast and slow
systems is obtained in the strong interaction limit. The result is applied for
studying the effect of quantum phase transition as a bifurcation of the ground
state of the slow subsystem. Examples such as atom–field and atom–atom
interactions are analyzed in detail.

PACS numbers: 03.65.Fd, 42.50.Ct, 42.50.Hz

1. Introduction

Frequently, in the process of interaction between two quantum systems, only one of them
can be detected experimentally. In this case, a variety of physical effects appear in the
process of such interaction which can be described in terms of an effective Hamiltonian
corresponding to the observed system. The simplest example of such a situation arises
when a fast system interacts with a slow system. Then, the fast system can be adiabatically
eliminated and the slow system is described by an effective Hamiltonian. These considerations
were assumed in the famous Born–Oppenheimer approximation. A regular approach to the
quantum dynamics of the observed system is provided by the Lie transformation method [1, 2].
The advantage of this method consists of the possibility of varying the system’s parameters,
changing relations between them, which allows us to describe different physical regimes using
the same mathematical tool. In particular, such an important example as expansion on the
resonances in quantum systems not preserving the number of excitations can be obtained [3].
In this case a generic Hamiltonian governing the interaction of two subsystems beyond the
rotating wave approximation (RWA) can be represented as a series in operators describing all
possible transitions in the system.
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Several interesting features appearing in the process of interaction of quantum systems
can be realized by studying evolution of only two generic quantum system with one quantum
channel. Even in such a simple case we may discriminate at least three interesting limits:
(a) when the interaction constant g is much higher than the characteristic frequencies of both
interacting systems; (b) when g is much smaller than the frequencies of the systems and (c)
when g is higher than or of the order of the frequency of one system but much smaller than
the frequency of the other one.

Case (a) of very strong coupling should be studied carefully, because using the expansion
parameter such as an interaction constant over a characteristic frequency could be quite tricky.
For instance, the type of the spectrum corresponding to the non-perturbed and to the perturbed
systems can be different: either continuous or discrete.

Case (b) corresponds to a situation where the resonance expansion is applicable. As
was shown in [3], the evolution is governed by an effective Hamiltonian describing a certain
resonant interaction and the representation space of the total system can always be divided
into (almost) invariant subspaces.

The last case (c) possesses a peculiar property: besides finding a corresponding effective
Hamiltonian, we can also project it out to the lower energy state of the fast system, which
would never get excited under given relations between the system’s parameters, and thus,
describe an effective dynamics of the slow system in the limit of strong interaction. In this
work we extend the Lie transformation method [2, 3] to this limit and show how the quantum
phase transitions naturally emerge in this region of the system’s parameters.

The quantum phase transitions (QPT) are a common feature of nonlinear quantum systems.
Such transitions occur at zero temperature and are associated with an abrupt change in the
ground-state structure. QPT are related to singularities in the energy spectrum and, at the
critical points defining QPT, the ground-state energy is a non-analytic function of the system’s
parameters [5]. Qualitatively, for a wide class of quantum systems, several important properties
of QPT can be studied in the thermodynamic [6] and semiclassical limits [7, 8]. Then, QPT
can be analyzed in terms of a classical effective potential energy surface [9]. In this language
QPT are related to the appearance of a new classical separatrix when the coupling parameters
acquire certain values. According to the standard semiclassical quantization scheme and the
correspondence principle, the energy density is proportional to the classical period of motion,
diverging on the separatrix, which explains a high density of quantum states at the critical
points.

Our goal is to study effective Hamiltonians describing the evolution of a generic quantum
system X interacting with a quantum system Y in the case where the characteristic frequency of
the system X is essentially lower than the corresponding frequency of the system Y, ωX � ωY ,
and the interaction constant g satisfies the strong coupling condition: ωX � g �ωY . We show
that depending on the type of interaction and the nature of quantum systems different physical
situations take place, but generically such effective Hamiltonians describe quantum phase
transitions in the slow system.

2. Effective Hamiltonian

Let us consider the following generic Hamiltonian describing an interaction between two
quantum systems:

H = ω1X0 + ω2Y0 + g(X+ + X−)(Y+ + Y−), (1)

where X0 and Y0 are the free Hamiltonians of the X and Y systems respectively, and such that
ω1 � ω2. The above Hamiltonian does not preserve the total excitation number operator
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N = X0 + Y0 and, in the limit ω1, ω2 � g, leads to the appearance of multiphoton-type
interactions of the form Xn

+Ym
− which, under certain physical conditions on the frequencies

ω1,2, describe resonant transitions between energy levels of the whole system (see [3] and
references therein).

The raising–lowering operators X±, Y± describe transitions between energy levels of the
systems X and Y respectively and consequently obey the following commutation relations:

[X0, X±] = ±X±, [Y0, Y±] = ±Y±.

We do not impose any condition on the commutators between transition operators, which
are generally some functions of diagonal operators and of some integrals of motion
[N1, X0] = [N2, Y0] = 0:

[X+, X−] = ∇X0φx(X0, N1),

[Y+, Y−] = ∇Y0φy(Y0, N2),

where φx(X0, N1) = X+X− and φy(Y0, N2) = Y+Y− are some polynomials of X0 and Y0

respectively (from now on we omit the dependence on integrals N1,2 in the arguments) and
∇zφ(z) = φ(z) − φ(z + 1). The objects (X0, X±) and (Y0, Y±) are known as polynomial
deformed algebras slpd(2, R) [11].

Now, we will be interested in the limit where the slow system frequency is less than/or of
the order of the coupling constant, ω1 � g � ω2. It is worth noticing that the rotating wave
approximation cannot be directly applied to Hamiltonian (1) in this regime; this is because
the contributions of the counter-rotating and rotating terms are of the same order. However,
the Lie transformation method can be used following the method [2] we can adiabatically
remove all the terms that contain the fast system’s transition operators, Y±. In particular, the
counter-rotating term X+Y+ +X−Y− and the rotating term X+Y−+X−Y+ can be eliminated from
the Hamiltonian (1) by a subsequent application of the following Lie-type transformations:

U1 = exp[ε(X+Y+ − X−Y−)], (2a)

U2 = exp[ε(X+Y− − X+Y−)], (2b)

where the small parameters, ε and ε, are defined by

ε = g

ω2 + ω1
� 1, ε = g

ω2 − ω1
� 1.

The transformations (2a) and (2b) generate different kinds of terms: such as Xn
±Y k

± +
h.c., Xn

±Y k
∓ + h.c., Y n

± + h.c., and Xn
± + h.c. with coefficients depending on X0 and Y0. Under

the condition ω1, g � ω2 all the rapidly oscillating terms, i.e. those containing powers of
Y±, can be removed by applying transformations similar to (2a), (2b), with properly chosen
parameters. In particular, in this paper we will restrict ourselves by terms up to third order on
the small parameters, which are sufficient to analyze the phenomena of our interest. Then, the
transformation required to eliminate the terms that contain the transition operators Y±, which
appear after applying (2a), (2b), has the form

U3 = exp

[
δε

2

(
Y 2

+ − Y 2
−
)∇xφx(X0)

]
. (3)

The result can be expressed as a power series of the single parameter δ = g/ω2 � 1.
It is worth noting that it is not enough that δ be a small parameter for the formal expansion

in (2a) (and the subsequent transformations). A balance is necessary between the effective
dimensions of the subsystems and δ. The effective dimensions of the system depend on the
order of the polynomials φx,y , and on the powers of the elements X±,0 and Y±,0 involved in
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each transformation. It was shown before [3], that the powers of the small parameters are
increasing faster than the powers of X±,0 and Y±,0, which implies that we can focus on the
effective dimensions introduced with (2a).

Taking into account the above-mentioned considerations, keeping only terms up to third
order in δ and disregarding small corrections to the effective transition frequencies and
to the quadratic term, we arrive at the following effective Hamiltonian, diagonal (in our
approximation) on the operators of the Y system,

Heff = ω1X0 + ω2Y0 − 2ω1δ
2∇x,−y�(X0, Y0 + 1) + gδ∇yφy(Y0)(X+ + X−)2

+ 1
2gδ3∇y

(
φy(Y0)∇2

yφy(Y0 − 1)
)
(X+ + X−)4, (4)

where

�(X0, Y0) = φx(X0)φy(Y0),

and the generalized displacement operators are defined as

∇mX0,nY0f (X0, Y0) = f (X0, Y0) − f (X0 + m,Y0 + n),

for m and n integers.
Because the effective Hamiltonian (4) is diagonal for the operators of the fast system (Y),

we may project it out onto a minimal energy eigenstate of the Y system, |ψ0〉Y , substituting Y0

by its eigenvalue y0: Y0|ψ0〉Y = y0|ψ0〉Y , where the parameter y0 is usually directly related
to the dimension of the system Y.

The first-order effect comes from the term ∼ (X+ + X−)2, while the term ∼ (X+ + X−)4

defines a fine structure of the effective potential, obtained after projecting the effective
Hamiltonian (4) onto the state |ψ0〉Y .

It is easy to evaluate the effect of transformations (2a), (2b) and (3) on the average values
of the system’s observables. Since we are interested in applying this approach to QPT, we
will study the ground-state effect. Thus, let us suppose that |ϕ0〉X is the ground state of the
effective Hamiltonian (4) projected onto the state |ψ0〉Y ,

Heff(y0)|ϕ0(y0)〉X = ε0(y0)|ϕ0(y0)〉X.

Then, the ground state of the whole system is

|	〉 = U †|ϕ0〉X|ψ0〉Y , (5)

where U = U3U2U1, and correspondingly, any average value should be computed using |	〉:
〈L〉 = 〈	|L|	〉 = Y 〈ψ0|X〈ϕ0|L̃|ϕ0〉X|ψ0〉Y , L̃ = ULU †. (6)

In particular, it is easy to evaluate 〈Y0〉 and 〈X0〉 up to second order on the small parameter δ:

〈Y0〉 = y0 − δ2
X〈ϕ0|(X+ + X−)2|ϕ0〉X∇yφy(y0), (7)

〈X0〉 = X〈ϕ0|X0|ϕ0〉X − δ2
X〈ϕ0|(X+ + X−)2|ϕ0〉X∇yφy(y0)

+ 2δ2(X〈ϕ0|φx(X0 + 1)|ϕ0〉Xφy(y0) −X 〈ϕ0|φx(X0)|ϕ0〉Xφy(y0 + 1)), (8)

where the averages X〈ϕ0|(X+ + X−)2|ϕ0〉X and X〈ϕ0|φx(X0)|ϕ0〉X clearly depend on the
parameters δ and y0.

It is important to stress that, although δ is a small parameter, the effect of the terms
∼δn, n � 1, could be in principle comparable with the main diagonal term ω1X0, especially
if the algebra of X operators describe a big subsystem, i.e., large spin or big photon number.
In this case non-trivial effects such as QPT may occur.
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Now, we may proceed with analysis of the effective Hamiltonian (4), focusing on the
possible bifurcation of the ground state. The simplest way to study the critical properties
of the effective Hamiltonian (4) consists of taking the thermodynamic limit, when after an
appropriate rescaling of the interaction constants (see [14]) we tend the dimension of the fast
system to infinity. It is worth noting that equations (5)–(8) allow us to study the finite size
effect, i.e. corrections to average values of the system’s observables for large, but finite values
of the dimension of the system Y.

3. Examples

3.1. Atom–field interaction (Dicke model)

The Hamiltonian governing the evolution of A symmetrically prepared two-level atoms
interacting with a single mode of a quantized field has the form [13]

H = ω1n̂ + ω2Sz +
g√
A

(S+ + S−)(a† + a), (9)

where n̂ = a†a and Sz,± are generators of the (A + 1)-dimensional representation of the su(2)

algebra. There are two important limit cases of the Dicke model: (a) when the field mode
interacts with a collection of atoms, which transition frequencies are essentially larger than the
field frequency; (b) when the atomic system interacts with a rapidly oscillating quantized field.
In the first case the effective potential for the field (oscillator) mode may change its topology
(when some conditions on the parameters of the system are satisfied) leading to the ground-
state bifurcation and in particular, to a spontaneous ‘condensation’ of the virtual photons into
‘real’ field excitations. In the second case, the atomic system effectively behaves as the well-
known Lipkin–Meshkov–Glick model, for which the ground state becomes degenerate for
certain values of the parameters, leading to a macroscopic change of the ground-state energy.

3.1.1. Effective field dynamics. First let us suppose that the atoms form a fast subsystem so
that

X0 = n̂, X+ = a†, X− = a, Y0 = Sz, Y± = S±,

and thus, φy(Y0) = C2 −S2
z + Sz and φx(X0) = n̂, where C2 = A/2(A/2 + 1) is the eigenvalue

of the Casimir operator of the su(2) algebra (integral of motion corresponding to the atomic
subsystem).

Projecting the effective Hamiltonian onto the minimum energy state of the atomic system
|0〉at, so that y0 = −A/2, we obtain the following effective Hamiltonian for the field mode:

Heff = ω̃1n̂ − gδ(a + a†)2 + gA−1δ3(a + a†)4 − A

2
ω2, (10)

where ω̃1 = ω1(1 − 2δ2).
Rewriting (10) in terms of position and momentum operators,

Heff = ω̃1

2
(p2 + x2) − 2gδx2 + 4gA−1δ3x4 − A

2
ω2,

we immediately detect that QPT in this case is related to the bifurcation of the effective
potential U(x) = (ω̃1/2−2gδ)x2 +4gA−1δ3x4 (up to a constant shift) from a single minimum
at x = 0 for 4gδ < ω̃1 to a symmetric double well structure at 4gδ > ω̃1, with minima at
x∗ = ±

√

A/(16δ3), where 
 = 4δ − ω̃1/g > 0. We stress that the above effective potential

describes the system behavior only in the weak excitation limit, 
 � ω1/g.
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The physical effect associated with this QPT consists of a spontaneous generation of
photons in the field mode. In some sense, the virtual photons, always presented in the Dicke
model (9), are condensed into the real photons after crossing the critical point 4gδ = ω̃1.

The finite size effect, can be appreciated from equations (7) and (8). For instance, for the
average value of the atomic inversion operator, we obtain

〈Sz〉f ≈ −A

2

(
1 − 4

δ2

A
〈ϕ0|q̂2|ϕ0〉f

)
,

where |ϕ0〉f is the solution of the equation[
p̂2 − 


g

ω̃1
q̂2 + 8

g

Aω̃1
δ3q̂4

]
|ϕ0〉 =

(
2E0

ω̃1
+

Aω2

ω̃1

)
|ϕ0〉,

where q̂ = (a + a†)/
√

2 and p̂ = (a − a†)/i
√

2, and E0 is the ground-state energy, which
can be obtained in the frame of the standard perturbation theory in the limit 
 → 0, allowing
to estimate 〈ϕ0|q̂2|ϕ0〉f by using the Feynman–Hellman theorem, taking as independent
parameters, for instance A and g, so that 
 = 
(g) and δ = δ(g).

In the thermodynamic limit (A → ∞) we obviously have

1

A
〈ϕ0|q̂2|ϕ0〉 ≈

{
0, 4gδ � ω̃1

x2
∗/A = 
/(16δ3), 4gδ � ω̃1,

so that [6] 〈Sz〉/A ≈ −ω̃1ω2/(4g2).
We can also easily evaluate, in the leading order on 
, the average number of photons

created in the field (normalized by the number of atoms) after passing the phase transition
point (superradiant phase), which in the thermodynamic limit has the form

n̄

A
≈ 1

2A
〈ϕ0|p̂2 + q̂2|ϕ0〉 ≈ 1

2A
x2

∗ = 


32δ3
≈ 
ω2

2

8gω1
,

and coincides with the one obtained in [6] in our approximation.

3.1.2. Effective atomic dynamics. In the opposite case, when the atoms form a slow subsystem
we have

X0 = Sz, X± = S±, Y0 = n̂, Y+ = a†, Y− = a.

Projecting the effective Hamiltonian onto the minimum energy state of the field mode |0〉f , so
that y0 = 0, the effective Hamiltonian acquires the form

Heff = ω̃1Sz − 4
gδ

A
S2

x + 2
ω1δ

2

A
S2

z , (11)

where ω̃1 = ω1 − 2ω2δ
2/A.

For our analysis it is convenient to perform a π/2 rotation in (11) around axis y (this
avoids the coincidence of the physically important south pole of the sphere with the singular
point), transforming the Hamiltonian (11) into

H̃ eff = −ω̃1Sx − 4
gδ

A
S2

z + 2
ω1δ

2

A
S2

x . (12)

In the semiclassical limit we may replace the atomic operators by the corresponding
classical vectors over the two-dimensional sphere, i.e.,

Sz → A

2
cos θ, Sx → A

2
sin θ cos φ, Sy → A

2
sin φ sin θ,

6
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and thus rewrite the effective Hamiltonian (12) as a classical Hamiltonian function,

Hcl = −A

2
(ω̃1 cos φ sin θ + 2gδ cos2 θ − ω1δ

2 cos2 φ sin2 θ). (13)

The first two terms in the above expression describe the semiclassical limit of the Lipkin–
Meshkov–Glick model [8] and determine the critical point of QPT, ξ = 4gδ/ω̃1 = 1, which
again is related to the bifurcation of the ground state: a single minimum at sin φ = 0, cos θ∗ = 0
splits into two minima at sin φ = 0, cos θ∗∗ = ±

√
1 − ξ−2 for ξ > 1. It is worth noting that

the global minimum of Hcl at ξ < 1 converts into a local maximum for ξ > 1, so that [8]

Hcl(θ∗∗) ≈ −A

4
(ξ + ξ−1) < Hcl(θ∗) = −A

2
.

This means that the atoms, initially prepared at the minimum of the Hamiltonian function,
spontaneously change their ground-state energy at some value of the system’s parameters.
Classically, this implies the appearance of a separatrix, which leads to the discontinuity on the
energy density spectrum in the semiclassical limit. It is also worth noting that there is a loss of
the rotational symmetry in this process: the new ground state is obviously not invariant under
rotations around axis x, while the initial ground state is clearly invariant under x rotations.

It is easy to see that the last term in (13) is of lower order in the parameter δ and can be
neglected in the first approximation for description of QPT at ξ = 1.

The finite size effect, can be appreciated from equation (7), leading for instance for the
following expression for the average photon number,

〈n̂〉a

A
≈ 4

δ2

A2

〈
S2

z

〉
a,

where 〈〉a means the average over the atomic state |ϕ0〉a , which is the ground state of the
Hamiltonian

H̃ eff = −ω̃1Sx − 4
gδ

A
S2

z .

Again, in the thermodynamic limit (A → ∞) one obtains

〈n̂〉
A

≈

⎧⎪⎨
⎪⎩

2δ2

(
1 −

(
ω̃1

4gδ

)2
)

ξ � 1

0, ξ � 1.

3.2. Spin–spin interaction

As a second example let us consider a dipole–dipole-like interaction, that is,

H = ω1Sz1 + ω2Sz2 + gSx1Sx2,

so that X0 = Sz1, X± = S±1, Y0 = Sz2, Y± = S±2. The effective Hamiltonian for the slow
spin system (after projecting onto the lowest state of the fast spin system with eigenvalue
−A2/2) takes the form similar to (11), with

Heff = ω̃1Sz1 − 2A2gδS2
x1 + 2A2ω1δ

2S2
z1 + 16gA2δ

3S4
x1, (14)

where ω̃1 = ω1 − 2A1ω1δ
2. The first two terms are dominant for δ � 1 and describe the

Lipkin–Meshkov–Glick model, so that the critical point is reached at ξ = 4A2A
2
1gδ/ω̃1 = 1

in the thermodynamical limit. The effect of the rest of the terms is negligible in the vicinity of
ξ = 1. The main difference between the above Hamiltonian, and the Hamiltonian (11) is the
last term; in this case we obtain a S4

x1 term because the algebra of the fast leads to a second
order polynomial on Y0, similar to the Hamiltonian (10) [3].

7
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4. Conclusions

We deduce the effective Hamiltonian of a generic slow quantum system interacting with another
fast oscillating system when the total excitation number is not preserved. Analyzing those
effective Hamiltonians in the semiclassical limit we have observed a bifurcation of the ground
state leading to the effect of the quantum phase transitions. We were interested exclusively
in the intermediate regime, where ωX � g � ωY , when the rotating wave approximation
cannot be directly applied (because the contribution of the anti-rotating and rotating terms in
the Hamiltonian is of the same order) and our main goal is to show that the Lie transformation
method provides a useful tool for approaching nonlinearly interacting quantum systems.

It is interesting to note that, for multidimensional systems, when algebraically the X system
is a direct sum of several non-interacting subsystems, an interesting effect of generation of
entangled states (in the non-preserving excitation case) can be observed. Really, let us suppose
that in (1) X0,± = X0,±1 + X0,±2, [Xj,1, Xj,2] = 0, j = 0,±; then the corresponding effective
Hamiltonian (up to a first non-trivial order in δ) takes the form

Heff ≈ ω1(X0,1 + X0,2) + ω2Y0 + gδ[(X+,1 + X−,1)
2 + (X+,2 + X−,2)

2

+ 2(X+,1 + X−,1)(X+,2 + X−,2)]∇yφy(Y0),

where we can clearly see that the last term contains the operator product ∼ X+,1X+,2 which,
together with quadratic terms in X±,1(2), implies a spontaneous generation of entangled states
of X1 and X2 starting from the minimum energy state. This can be corroborated by the
entangling power measure by considering a uniform distribution of the initial factorized states
[12]. Thus we can say that, in the regime studied here, entanglement can be generated in a
bipartite system the vicinity of a phase transition.

Acknowledgments

One of the authors (I Sainz) thanks STINT (Swedish Foundation for International Cooperation
in Research and Higher Education) for support. This work was supported by grants:
CONACyT 45704, Milenio ICM P06-067-F and FONDECyT 1080535.

References

[1] Steinberg S 1987 Lie Methods in Optics (Lecture Notes in Physics vol 250) (Berlin: Springer) p 45
[2] Klimov A B and Sánchez-Soto L L 2000 Phys. Rev. A 61 063802

Klimov A B, Sánchez-Soto L L, Navarro A and Yustas E C 2002 J. Mod. Opt. 49 2211–26
Sainz I, Klimov A B and Roa L 2006 Phys. Rev. A 73 032303

[3] Klimov A B, Sainz I and Chumakov S M 2003 Phys. Rev. A 68 063811
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